

HUMAN
POWER

TECHNICAL JOURNAL OF THE IHPVA

Number 51 Fall 2001

Summaries of articles in this issue; mast 2
Contributions to Human Power . 2

Erratum

Correction to article by Vernon Forbes in HP 50......... . 2

Articles

Determination of the crank-arm length to maximize
power production in recumbent cycle ergometry
Danny Too and Chris Williams 33
Bicycle pitchover characteristics
Frederick Matteson 6
CdA and Crr measurement
John C. Snyder Jr. 9
Technical notesEfficiency of bicycle chain drivesClaire L. Walton \& John C. Walton14
Further comments on the Spicer article on drive-train efficiency, John S. Allen. 15
Bicycle stability after front-tire deflation
Dave Wilson 16
Book reviews
The Athenian Trireme, by J.S. Morrison and others, reviewed by Theo Schmidt. 18
The Dancing Chain by Frank Berto reviewed by Dave Wilson 19
Bicycle Design by Mike Burrows reviewed by Dave Wilson 19
Editorials
Velomobiles, Joachim Fuchs 20
Open Road: the end of a dream, Dave Wilson 22
Tiresome, Dave Wilson 23

HUMAN POWER
 Fall 2001

\$5.50/IHPVA members, $\$ 4.50$

ERRATUM
In HP 50, p. 11, figure 3, the labels for the two lower lines were inadvertently reversod. The lose line is that for the Ritchey OCR rim, and the middle line is for

IN this issue

ptimum crank

ecumbents
Danny Too and Chris Williams tested ineteen subjects using the recumbentating position found in earlier studie o permit maximum power output to maximum effort using, in turn, five differ ent crank lengths. (One subject produced
over 1.1 kW . The recommendations for he best lengths of cranks for different aces are bound to be followed closely.
Bicycle pitchovers
Ficycle pitchovers
Fratteson is concerned for the safety of bicyclists, particularly when braking on steep descents. His analysis as produced a graph on which each rider can enter her/his body and bike characte
stics, and thereby learn on which hills her/his level of braking can be critical.

CdA and Crr measurements

 John Snyder has developed two methods of measuring one's coefficients of aerodynamic drag and of rolling drag. The first uses two hills of different slope out similar surface, and the terminal neasured data give the coefficients. The econd method involves one hill, and wo coasting runs down the hill, in one case with a drinstructions.
Technical notes
Technical notes
Chain-drive efficiency. Claire Walton nd John Walton have analyzed the Spice data from the last issue of HP, and have
shown graphically how increased chain shown graphically how increased chain
tension increases transmission efficiency Improvements in chain-loss measurements? In another technical note on the Spicer data, John Allen sugg
a feedback system for the driver a ferquemeter from the driven torque
to avoiding the inexactness of measuring the difference between two similar quantities. Bicycle stability after front-tire
deflation. Your editor reports on studie by Andy Oury and others on tires that produce instabilities when they go flat. The prime recommendation is that standards of tire-to-rim fits be
that standards
promulgated.
Book reviews
The Athenian
The Athenian Trireme, a book on a
human-powered warship of several hun dred years BC , is reviewed enthusiastical ly by Theo Schmidt.
The Dancing Chain, by Frank Berto,
Ron Shepherd and Raymond Henry is Ron Shepherd and Raymond Henry, is
a wonderful compendium of derailleur a wonderful compendium of derailleur
gears from the earliest to the latest times, favorably reviewed by your editor. Bicycle Design by Mike Burrows is another placed in the "must read" category by your editor

Editorials

Joachim Fuchs contributes a gues ditorial on velomobiles. es. sad "farewell and thank you" to Open Road, publishe of Encycleopedia and Bike Culture Quarterly, among other notable productions. I also write s.
angrily, again, about tires

CONTRIBUTIONS to HUMAN POWER

The editor and associate editors (you may choose with whom to correspond) welcome The editor and associate editors (you may choose with whom to correspond) welcome
contributions to Human Power. They should be of long-term technical interest (notices and reports of meetings, results of races and record attempts and articles in the style of "Building my HPV" should be sent to HPV News). Contributions should be understandable by any English-speaker in any part of the world: units should be in S.I. (with local units
optional), and the use of local expressions such as "two-by-fours" should be either avoided optional, and the use of local expressions such as
or explained. Ask the editor for the contributor's guide (available in paper, e-mail and pdf formats). Many contributions are sent out for review by specialists. Alas! We cannot pay for contributions. They are, however, extremely valuable for the growth of the humanpower movement. Contributions include papers, articles, reviews and letters. We welcome power movement. Contributions include papers, articles, reviews an
all types of contributions, from IHPVA members and nonmembers.

Determination of the crank-arm length to maximize power production in recumbent-cycle ergometry

Danny Too and Chris William

Abstract

The purpose of this study was to determine the crank-arm length that would maximize peak, mean and minimum power outputs in a recumbent cycing position. Nineteen male volun teers were each tested with five pedal-crank-arm lengths (110, 145, 180, 230 and 265 mm) according to a randomized sequence on a free-weight Monark cycle ergometer. The 30-second Wingate Anaerobic Cycling test was performed in a recumbent position (75° seat-tube ange, back perpendicula 85 g kg of the subject's bor (5.0 J /rank revig BM). Curve est tion with regression analysis revealed that the crank-arm lengths to maximize peak power, mean power and minimum peak power, $\mathrm{mm}, 175 \mathrm{~mm}$ nd 215 mm , respectively.

Introduction

It is well documented that recumbent human-powered vehicles with aerodynamic fairings, having a smaller drag coefficient and cross-sectional area, are faster than the standard racing bicycle (Kyle, 1982). However, with the current speed record of $117.06 \mathrm{~km} / \mathrm{hr} 72.74 \mathrm{mph})$, established in 2000 by a single rider (Sam Witting -ham) on a Varna recumbent bicycle "Mephisto", designed and built by Georgi Georgiev, it becomes questionable whether a more aerodynamically effective human-powered vehicle can be designed. If future speed records are to be attained, it is necessary to but also to examine the variables that affect power production in recumbent cycling and the interactions that would cyaximize it Investigations in this mar of recumbent cycling this area of recumbent cycling and power nation of changes in seat-tube angle (Too, 1991) and trunk/backrest angle (Too, 1994).
Too (1991), examining a systematic change in seat-tube angle $\left(0^{\circ}, 25^{\circ}, 50^{\circ}\right.$,

Figure 1. Recumbent position with a $\mathbf{7 5}$ degree seat-tube angle 75° and 100°), reported the largest peak power and mean power to be and a parabolic curve (quadratic tren best describing the change in peak power and mean power with changing seat-tube angles. Seat-tube angle was defined by the angle formed between he seat tube and a vertical line (perpendicular to the ground) passing hrough the crank spindle. Using a 75° seat-tube angle, Too (1994) investigated the effect of three trunk/seatbackrest angles ($60^{\circ}, 90^{\circ}$ and 120°) on power production. A parabolic trend in peak power and mean power was mand whe with the largest and mean power rest uing the 00° trunk angle
Based on muscle force-length and force-velocity power relationships, changes in crank-arm length will ffect joint angles, muscle length, orce, torque and power production in cycling. Since the literature involving traditional upright cycling positions utput with changes in crank-ar
length (Hull \& Gonzalez, 1988; Inbar, Dotan, Trousil \& Dvir, 1983; Too \& Landwer, 2000), it can be assumed that power production will also be affected in a recumbent cycling position with different crank-arm lengths. Therefore the purpose of this study was to determine the trend in power production with changes in crank-arm length, and the crank-arm length that would maximize peak power, mean power and minimum power in a recumbent cycling position.

МетноD

Nineteen healthy volunteer male participants (mean age $=24.8 \pm 4.4$ yr., weight $=81.76 \pm 11.84 \mathrm{~kg}$, height $=1.80$
$\pm 0.08 \mathrm{~m})$ subjects were tested with $\pm .08 \mathrm{~m})$ subjects were tested with (Model 814E) at five pedal-crank-arm (as defined by the distance between the as defined by the distance between spindle. (The normal crank-arm length spindie. (The normal crank-arm length
for a Monark cycle ergometer is 170 mm). To accomplish this, two adjustable crank arms allowing for manipulations from 0 to 300 mm were used (Too \& Landwer, 2000). All subjects were

Table 1. Peak power, mean power, minimum power, maximum
minimum pedaling rate with changes in crank arm length
tested in each of the five pedal-crank-arm-length conditions, with the order of testing randomly assigned. There wa between test sessions. For each tion, pedal toe clips were worn and the subject was strapped to the seating apparatus at the hip and trunk.
The recumbent cycling position used for all test sessions, was defined by a 75° angle formed between the bicycle seat tube and a vertical line passing seat tube and a vertical ine passing
through the crank spindle (see figure 1; Too, 1991). To obtain this seating position, a variable seating apparatus, allowing for manipulations in seat-tube angle, backrest angle and seat-to-pedal distance was used and interfaced to a Monark cycle ergometer (Model 814E). The seat backrest was kept perpendicular to the ground and the seat-to-pedal distance adjusted to 100% of the total leg length of each subject, as measured from the right femur to the ground (Too, 1991). The test protocol involved a computerized 30-second Wingate Anaerobic Cycling Test. To initiate the test, the subject pedaled the cycle ron ergometer's inertial resistance had been (85 g kg of the subject's body was instantaneously applied using cali bration weights, and the subject pedaled as hard and as fast as possible for 30 seconds. A Sports Medicine Industry (SMI) opto-sensor (Model 2000) with a sampling rate of 50 Hz , interfaced with a Zenith 386 micro-computer, in conjunction with 16 reflective markers on
the ergometer flywheel, was used to monitor and record flywheel revolutions during the test. Peak power was wheel speed during any consecuase five seconds, mean power was dete mined from the mean flywheel speed for the entire 30 -second test and mini mum power was calculated from the lowest mean flywheel speed during any consecutive five seconds (which was always the last five seconds). The different power variables were calculated using the following equation:
Peak power $($ watts $)=[$ load $(\mathrm{N})] \times$ distance covered by flywheel with one revolution (1.615 meters pe revolution) \times average number of recorded flywheel revolutions for five seconds (rpm)]/[1 min/60 sec] Additionally, maximum and minimum pedaling rates were calculated from flywheel speed recorded for peak power and minimum power, respective ly. The equation used in this calculation was:
Ped
Pedaling rate (rpm) $=$ average flywheel rpm for five seconds / 3.7 yevio (Gledhill Jain This would be wivalo This would be equivalent to a 2/4 gear rana. Curve estimation with mine: (1) the trend in peak power ne: (1) the trend in peak power, with changes in crank-arm length; and (2) the crank-arm length that would maximize peak power, mea power and minimum power during a 30 -second test.

Results

With changes in crank-arm lengths, the mean \pm SD values of peak power, mean power, minimum power, maxipresented in table 1 . Bresented in table 1
change in peak power mean powe and minimum power with increasing crank-arm length, appears to be best described by a parabolic curve, represented by the equation: $y=-x^{2}+x+$ C (where y represents power and x represents crank-arm length) as shown in figure 2 . The specific regression equations for the various measures of power were as follows:
Peak power (quadratic trend, $\mathrm{p}=0.006$): $\mathrm{y}=-0.011 \mathrm{x}^{2}+2.8 \mathrm{x}+972$ (SE = 11)
Mean power (quadratic trend, $p=0.011): ~ y=-0.011 x^{2}+3.8 x+513$
$(S E=5)$ (SE = 5)
Minimum power (quadratic trend, $\mathrm{p}=0.002): \mathrm{y}=-0.007 \mathrm{x}^{2}+2.8 \mathrm{x}-325$ (SE = 2)
From table 1, several observations ca be made: (1) regardless of crank-a length, peak power is greater than er than minimum power; (2) peak er than is greatest with the $145-\mathrm{mm}$ crank-arm length and least with the $265-\mathrm{mm}$ crank-arm length. (3) mean power is greatest with the 145 -and $180-\mathrm{mm}$ crank-arm lengths and least with the $265-\mathrm{mm}$ crank-arm length; (4) minimum power is greatest with the $230-\mathrm{mm}$ and least with the $110-\mathrm{mm}$ crank-arm length; and (5) maximal
and minimal pedaling rates occur with the $110-\mathrm{mm}$ crank-arm length. From regression equations, the predicted crank-arm lengths to maximize peak power, mean power and minimum power are $124 \mathrm{~mm}, 175 \mathrm{~mm}$ and 215 mm , respectively.

Discussion

Since no literature could be found examining the effect of changes in crank-arm length on cycling performance in a recumbent position, comparisons will be made with the literature available for an upright position. The parabolic curve observed in peak power and mean power with increasing crank-arm length is consistent with the trend for an upright position reported by: (1) Inbar et al. (1983) for five crank-arm lengths (125, 150 15) Lodwer (2000) for five (2) and Las (110 ($145,180,230$ and 20 -arm From best fitting parabolic curves Inbar et al (1983) described the pea Inbar et al. (1983) described the peak power and mean power to occur at 164 mm , respectively; whereas Too and Landwer (2000) predicted peak power and mean power to be maximized with crank-arm lengths of 164 and 200 mm , respectively. This is quite in contrast with the predicted crank-arm lengths (124 and 175 mm) to maximize peak power and mean power, respectively for a recumbent position.
The largest peak power (762.7 W) and mean power (615.9 W) values reported by Inbar et al. (1983), and those reported by Too and Landwer (2000; largest peak power and mean power values to be 968 W and 718 W , respectively) are less than the largest peak power (1144 W) and mean power (845 W) values recorded for the recumbent position in this investigation. In length condition peak power values (and all mean, p er values) in the recumbent position were greater th the largest peak and mean power values reported by Inbar et al (1983) and by Too and Landwer (2000) for an upright position. The smaller peak power and mean power values peak power and mean power values
reported by Inbar et al. (1983) may be attributed to a smaller load used
$75 \mathrm{~g} / \mathrm{kg}$ body mass) and/or to the different stature of the subjects tested (approximately 10.5 kg smaller, 73 mm shorter than the subjects of this inves tigation). However, the smaller peak nd mean power values reported by Too and Landwer (2000) are probably atributed to differences in lower-limb jongles (between an upright cumbent position) and/or antial maller force production potential in eat-backrest to push against).
Based on the predicted crank-arm engths to maximize the different power variables, and the trend of peak power, mean power and minium power with changes in crank-arn ength, it would appear that an interac tion exists between crank-arm length mal crank arm lensth to maximize wer lependen ond pedalis rate Since power is a function pedaling orce and velocity the optimal crank lonth to maximize peak power would be one where the maximum pedaling rate is produced and maintained with the largest load that can be applied. Although manipulation of oad was not examined in this invesigation, changes in crank-arm length would alter the torque on the crank arm (when the same force is applied) nd would be analogous to a change in load. Based on the force-velocity elationship, a longer crank-arm length esulting in a lower "load" experience by the lower limbs will result in a reater linear velocity at the pedal (when compared to the same pedaling ate with a shorter crank-arm length). his was confirmed when the maxima pedaling rates determined for the difation were ar pelal velocity The mand linear edal velocity was found to increase although the maximal pedaling rate decreased) with increasing crank engths from 110 to 265 mm . Similarly, increase in crank .in. Simiarly 110 to 265 mm also resulted in n increase in minimum linear pe velocity (as determined from the minimum pedaling rates) and is also consistent with that expected from force-
velocity relationships. Since parabolic curves in power were observed with increasing crank-arm lengths, and the largest values for peak, mean and minimum power were found with three difindic crank-arm lengths, this wou indicate that the optimal crank-arm length to maximize power is dep
on the type of power examined. In this investigation, the optima crank-arm lengths predicted to maxi mize peak, mean and minimum powe with a load of $85 \mathrm{~g} / \mathrm{kg}$ BM, were $124 \mathrm{~mm}, 175 \mathrm{~mm}$ and 215 mm , respectively. The interaction between crank-arm length, pedaling rates and load (as evidenced by parabolic curves for power), would suggest that the optimal crank-arm length for peak, mean and with different the force-velocity-power relationship ineres loads to maximize power, resulting in a decreased pedal rate would favor longer crank-arm length Changes in crank-arm length will affect not only the force-velocity-pow relationship, but also the muscle forcelength relationship. From the force length curve a muscle can produce its largest force at resting length, with a decrement in force at increasing or decreasing lengths. Systematic increments in crank-arm length (from 110 to 265 mm) for an upright cycling position have been reported to result in significant decrements in minimum hip and knee angle, and significant increments in hip and knee range of motion (Too and Landwer, 2000). Whether it is more advantageous to use a long crank arn or a short crank arm is unknown because there is a complex interactio among changes in joint angles, muscle leng to and mascle-nomentan to produce fore and torque with plexity is further increased when multi pany moles that cros the knee, or knee and ankle are involved and interact with force-velocity-powe relationships. Additional research into the interaction of crank-arm lenoth pedaling rate and load on power pro duction is needed before the limits of performance in human-powered vehicles can be reached

UMMARY

The predicted crank-arm lengths to maximize peak power, mean power and minimum power in a recumbent cycling position, using a resistance load of $85 \mathrm{~g} / \mathrm{kg}$ body mass, were $124 \mathrm{~mm}, 175 \mathrm{~mm}$ and 215 mm , respectively. This would suggest that for human-powered vehicle competitions of short duration, where maximal peak power is necessary, a shorter crankarm length is recommended. For competitions of longer duration where fatigue is a factor and the largest mean power and minimum power become important, it is suggested that longer crank-arm lengths be used.

References

Gledhill, N. and Jamnik, R. 1995 Determining power outputs for cycle ergometers with different sized fly-
wheels. Medicine and Science in Sports and Exercise 27:134-135 Hull, M. L. and Gonzalez, H. 1988. Bivariate optimization of pedallin rate and crank arm length in cycling rate of Biomechanics 21:839-849. Inbar, O., Dotan, R., Trousil, T. and Dvir, Z. 1983. The effect of bicycle cranklength variation upon power performance. Ergonomics 26:1139-1146. Kyle, C.R. 1982. Bicycling 23:59-66. Too, D. 1991. The effect of hip position/configuration on anaerobic power and capacity in cycling. International Jl. of Sports Biomechanics 7:359-370.
Too, D. 1994. The effect of body orientation on power production in cycling. The Research Quarterly for Exercise and Sport 65:308-315.
Too, D. 2000. The effect of pedal crank arm length on joint angle and power production in upright cycle ergometry. Jl. of Spors scial About the author
Danny Too is an associate professo in tion and Sport at the Physical Educaof New York at Brockport and has been involved in human-powered-ve cle research since 1985
-Danny Too State University of NY at Brockport 350 New Campus Drive Brockport, NY 14420 USA E-mail: dtoo@brockport.edu

Bicycle pitchover characteristics

SUMMAR

Pitchover is explained and a graph developed showing boundaries versus lopes. Situations

INTRODUCTION

Pitchovers, wherein the bicycle and rider rotate forward about the front wheel, have been a problem since the early days of cycling when the highwheel, direct-drive bicycle, commonly referred to as the "Ordinary" and later, derisively, as the "Penny Farthing", was used. The position of the rider, high an forward wese cycles likely to pitch fore, nade these cycles inely to pith foror It was this dater than gevelop dor hin " bicycle" still in use today. Today's bicycles, with the rider well back between the wheels, are far safer, but pitchovers he wheels, are far sur and do still occur.
This article concerns the matter of
hills. That steep hills are an expectation of touring cyclists is evident by the installation of triple chainwheels
and wide-range gearing on touring machines. Before the time of the auto mobile steep roads were common in this country. Horses could climb steep hills, but cars had limited climbing ability. The author recalls seeing Ford Model T's stop at the bottom of a hill, turn around and back up because they could climb a steeper hill in reverse gear. Such a practice was not reasonable and the trend has been towards less-steep public roads in the United States. The process of builung safe, straightening and leveling often great expense and difficulty Abroad and in particular in lesser developed lands or where there are fewer automobiles, even main fewer be unsealed, crooked and containing steep slopes. Safety features common

Figure 1. Sketch of forces and moment arms on bicycle and rider
in the USA may not be present. Signs, striping, guard rails and signals may be absent. Dangers may appear with out warning and such hazards as very steep local inclines, improper banking, holes or damage may suddenly appear. Very narrow roads are common in mountainous areas, sometimes wide enough for only one vehicle. These dangers may well result in the cyclist having to use sudden and strong braking. Braking on steep descents can easily lead to a pitchover accident and this will be discussed as the main subject of this article

Analysis of pitchover

Because the rider on a conventional bicycle sits high and the wheelbase is fairly short, braking tends to cause the bicycle and rider to pitch over. is revuired to result in a pere braking However, as the bicycle inclines forward, such as in going down a hill the weight vector inclines forward such that more weight is carried by the front wheel than on level ground. Application of brakes produces a pitching moment as on level ground. Much less braking than on level ground can result in a pitchover. Analysis can tell us how much. The subject of pitchover has been covered by DeLong (1978, 208-209) [and Sharp (1977 [1896], 216-220) Ed.]. Herein an equation will be derived showing the braking required as a fraction of the total weight of bicycle and rider for a range of slopes of the road. The sketch (figure 1) shows a bicycle and rider on a road with a slope of Φ. The height of the combined bicycle-and-rider center-of-gravity on level ground is h. The

Definitions

F	slope
h	height of the combined bicycle-

$\underset{\mathbf{W}}{\mathbf{P}}$ front-wheel contact point rider
B braking force
1 horizontal distance from bicy-cle-and-rider center of gravity on level ground to contact point,
$=$
h tan

Gradient, percent

Figure 2. Pitchover points versus descent angle
distance of the center-of-gravity from the front-wheel contact point, P , on level ground is 1 . The total weight of bicycle and rider is W . The braking orce is B. The inclination of the bicycle causes the line of action of the weight vector to go forward an amount ' on the ground. The pitchover will be initiated when the inertial moment from the braking about P is equal to the moment of the weight. Noting that
$\mathrm{l}^{\prime}=\mathrm{h} \tan \Phi$
Eq. 1
$\mathrm{Mp}=0=\mathrm{Bh}-\mathrm{W}\left(1-\mathrm{l}^{\prime}\right) \cos \Phi E q$. ubstituting for 1 , and simplifying,
$B / W=1 / h \cos \Phi-\sin \Phi$
Eq. 3
This expression yields the brake force as a fraction of the total weight where pitchover will take place for various ratios of $/ \mathrm{h}$ and angles, Φ. It may be seen that on level ground ($\Phi=$ 0, cos $\Phi=1.0$, and $\Phi=0$ (Φ , of values of 1 l ange figure 2 . on figure 2.
fone is to descend a hill at a onstant speed and not accelerate, the accelerating component of gravity Assuming that that resistance is the force supplied by the brakes, B, $B=W \tan \Phi$

The braking force for this steady state increases as the slope increases, On a steep hill this required braking force could exceed that which would result in a pitchover. Under these conditions the rider is in serious figure. 2 as a dashed line. To show where actual bicycles and riders would lie on the figure, the author's two touring bicycles, with him on them, were chosen. One is a lightweight touring bicycle of conventional design and the other is a Bike Friday New World Tourist model. These two bicycles differ greatly in appearance, but fit and perform similarly. Each was fitted with fenders (mudguards), rea pannier rack, frame pump and empty water determined Beanse both wire deterned. Because bot are not considered applicable to othe people's bicycles. The curves of B/W versus Φ are shown. The differences between the two curves is surprisingly small. The center-of gravity of the Bike Friday was slightly lower than the conventional bicycle, making it a more stable.
Discussion
Figure 2 shows, as an example, that if one is on a bicycle and the value
of $1 / h$ is 0.5 (curves descending to th right) and the slope is ten degrees (vertical lines) that their intersectio occurs at a value of B / W (horizontal lines) of approximately 0.32 . That means that a braking force of about a third of the weight of the bicycle plus rider would be enough to cause a pitchover. This level of braking can be easily attained. But because the point lies well above the curve for braking for steady state, less braking applied than that for pitchover would allow deceleration. If the slope were to increase to about 14 degrees, the pitchover-braking and steady-statebraking curves coincide and there is no margin for slowing. If one follows the $1 / h$ curves down to the x-axis, those pitchover with no braking The impor tance of figure 2 to the cyclist is not in such calculations, but rather in permitting an understanding of the nature of the problem. In practice one probably does not know the steepness of the hill does not know the steepness or the hill the position of the rider; the rider can increase $1 / \mathrm{h}$ by lowering his body or sliding back on the saddle. Further, the rider can only roughly judge the amount of braking force. Lastly, the likely situation for a pitchover will often not be in a steady descent, but in some sort of emergency condition. It is obvious from the analysis that the slope of the roadway is a most critical variable. In the USA criteria and standards exist governing slopes of roads. The American Association of State Highway and Transportation Officials (Merritt, 1983, Table 16-6) has set forth limiting standards for slopes. On Interstate highways and primary roads the limits are five to seven percent (3-4 in mountainous terrai limits of 10 percent are suggested (6 degrees) These standards are sugrested standards only and each state in fact establishes its own standards. In reality roads may vary widely and
ften exceed the standards in the USA. In other countries the slopes may be greater.
In the vicinity of Hollister, California the author measured slopes. On local oads and highways the slopes measured did not exceed eight degrees (14 percent). However in residential subdivisions, where children live, roads used by cyclists often approached or reached ten degrees (17.6 percent). The county [San Benito] allows up to 15 -per ent slopes for long stretches or 16 per ent for up to 122 meters (400 feet).
In mountainous areas of the world he cyclist is likely to encounter sharp urns often referred to as hairpin turns or switchbacks. These turns pose specal dangers. Good practice dictates hat the turn not be too sharp, i.e., that would exist in the case a descend og turn to keep the cross section of the roadway level requires that inner portion of the road be cut away along radial lines resulting in a helical hape. If the road extends to the center of the curve then that portion of the road at the center descends ver tically. Such turns exist. These turns often restrict visibility severely. As one rounds a turn one may find oneself facing a bus or truck inching up the slope, blocking the road and requiring sudden braking and possibly making the cyclist ug the inner side of the road. An accident may not be avoidable. It is the ocal slope of the surface that is critical and the braking used, even momentarily, which will result in the pitchover. Speed is important too because, although it does not in itself determine pitchover, the moving bicyle pitching over can act as a cataput on the rider and
ore serious.
What can be done to avoid pitching ight lower himself or move react he bicycle. It would seem helpful to lowe or move aft the bagrage Panniers can be carried low They tend to get
dirty from splashing and sometimes hit curbs, but otherwise seem to be satisfactory. Moving the load aft is difficult and may adversely affect handling However, if, as often happens in touring, the baggage is removed, say, to climb a mountain for sightsee the load is not avail
Although they may have other shortcomings in hills, tandems do have superior longitudinal stability. Recumbent bicycles come in a large variety of forms, but the lower center of gravity should generally alleviate the pitchover problem. The long-wheelbase style should be very stable. Sometimes plan ning can be beneficial. If one is makin a round trip on a road with a steep hill ine should be safer dibection of than descending that hill It is one purpose of this ticle that is oners pung the danger and the mechanism of pitchover should make for a safer cyclist. Another hope is that road cyclist. Another hope is that road that some designs and practices may not be particularly hazardous to moto vehicles and yet be very hazardous to bicycles. In many cases hazards can be rectified, reduced or avoided. References
DeLong, F. 1978. DeLong's guide to bicycles and bicycling. Radnor, PA: Chilton.
Merritt, F. S. 1983. Standard handbook for civil engineers, 3rd ed. NY: McGraw-Hill.
Sharp, A. 1977. Bicycles and tricycles Cambridge, MA: The MIT Press. (Originally published in London by Longmans, Green, 1896.)

The Author

Frederick H. Matteson, a retired engineer, has been riding bicycles for 70 years and 1 abroad over a span of almost 60 years. Frederick H. Matteson Hollister, CA 95023-5525 USA Phone: 831-637-6598

CdA and Crr measurement

by John C. Snyder, Jr

Abstract

This paper provides the conceptual basis, and examples, of ways to estimate an HPV's rolling and aerodynamic resistance by utilizing the slope-intercept form of a linear equation as applied to coastdowns on down-grades.

introduction

This testing protocol was developed to evaluate objectively two of the qualities affecting the performance of a bicycle. The procedures detailed do not seek to model fully all of the physical factors involved. Instead, they serve as a means to make quantitative observations during actual riding conditions. Of significance, the methods rely upon measurable steady states.
Requirements for constant-slope hills and for wind-free conditions impose a limit to when and where the protocol may be employed. The reader is encouraged to study works by Chester Kyle and others listed in the suggested reading ing aerodynamic drag and rolling resistance.
Premise
PREMISE
There are six losses that a cyclist must overcome while pedaling: gravity (if she or he is climbing), air drag (if adverse), rolling resistance, linear and rotational inertia
changes (if accelerating), and drive-train inefficiencies [1]. At a constant velocity, inertia changes are null. While coasting, drive-train losses are non-existent [2]. Terminal velocity of a downhill-coasting bicycle refers to the phenomenon whereby the down-road component of the force of gravity achieves equilibrium with the two remaining primary loads: aerodynamic drag and rolling resistance.
$\mathrm{Cd}=\frac{\text { mass } \times \text { gravity } \times[\text { sine }(\text { angle })-\mathrm{Crr}]}{\text { air density } \times \text { area } \times \text { terminal velocity }{ }^{2} \times 0.5}$
The above formula, describing the coefficient of drag (Cd) of a land vehicle when coasting at terminal speed, squares velocity and contains a sine function. Therefore it does not appear at first inspection to follow the pattern of a linear equation. The equation may be treated as though it were linear when only Cd and the coefficient of rolling resistance (Crr) serve as its variables and its other terms are regarded as constants.
Employing the following redistribution and substitutions facilitates setting the equation into linear slope-intercept form:
CdA $=\frac{\text { mass } \times \text { gravity }}{\text { air density } \times \text { terminal velocity }^{2} \times 0.5} \times[$ sine $($ angle $)-\mathrm{Crr}]$, and putting
$\mathrm{Y} \equiv \mathrm{Cd} A$
$\mathrm{m} \equiv \frac{\text { mass } \times \text { gravity }}{\text { air density } \times \text { terminal velocity }{ }^{2} \times 0.5}$, an
$\mathrm{b} \equiv \mathrm{m} \times \operatorname{sine}$ (angle), then the equation can be given as
$\mathrm{Y}=(-1) \mathrm{mX}+\mathrm{b}$.

By establishing values for mass, gravity, air density, termi nal velocity, and hill angle occurring in two dissimilar settings (prime and double prime), i.e., each producing unique values plausible to solve for $\operatorname{Crr}(\mathrm{X})$ using:
$\mathrm{Crr}=\frac{\mathrm{b}^{\prime}-\mathrm{b}^{\prime \prime}}{-\mathrm{m}^{\prime \prime}+\mathrm{m}^{\prime}}$
Once Crr is known, the corresponding CdA (Y) value may be determined with either:
$\mathrm{CdA}=(-1) \mathrm{m}^{\prime} \mathrm{X}+\mathrm{b}^{\prime}$,
$\mathrm{CdA}=(-1) \mathrm{m}^{\prime \prime} \mathrm{X}+\mathrm{b}^{\prime \prime}$
The opportunity now exists to identify experimental situations whereby two separate coasting events might be conducted, measured, and compared.

wo-HIL COMPARISO

Four constants appear within the formula (gravity, mass air density, and angle) that, when modified, result in a corresponding change in coasting velocity. For he moment, most consequential of those four to alter by a know erminal velocities as achieved on two unlike hills, with similar road textures, permits quantifying a bicycle's unique CdA and Crr solution set pair
In practice, comparing the terminal velocities achieved on two different hills, as well as the single-hill test that appear later, should be recognized as a method to approximate the values describing performance.

nput values and dimens

Reflect for a moment on the constants. Each needs to
be known with some assurance as it applies to a specific
coasting event. Knowing if calm wind conditions exist is also essential, as the formulation tacitly implies air and ground velocity equal one another. Fortunately, convivial means exist to quantify each.
Mass
The system's total mass can be found quickly by standing on a scale while holding the bicycle and all equipment that will be carried while riding. Ideally this measurement should be taken just prior to coasting.

Gravity
Acceleration due to gravity varies only slightly at different points on the earth's surface. It can generally be considered to be a value of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
Wind
A length of about 300 mm of single-ply tissue paper when held hanging straight down reveals whether or not calm wind conditions prevail. This deceptively uncomplicated tool demonstrates sensitivity to subtle movements of air. For the present need, a wind-speed-measuring device need only indicate zero wind velocity (see table 1).

Air density

The density of air, often referred to by the Greek letter ρ, varies considerably with altitude, temperature, and humidity.

Force	Strength	km / h	mph	Observation
0	Calm	$0-1$	-	Smoker erises vertic ally; ;issue hangs vertically.
1	Light air	$1-5$	$1-3$	Smoke drifts, tissue moves slighty.
2	Slight breeze	$6-11$	$4-7$	Leaves rustle: tissue becomes horizontal

$\begin{array}{llllll} & \text { Calm } & 0-1 & - & \text { Smoke rises vertically; tissue hangs } \\ 1 & \text { Light air } & 1-5 & 1-3 & \text { Smoke drifts; tissue moves slighty. }\end{array}$
2 Slight breeze 6-11 4-7 Leaves rustle; tissue becomes horizontal

Table 1. A portion of the Beaufort wind scale

However, a reasonable value may be obtained by applying air temperature and pressure to the ideal-gas law:
$\rho=P /(R T)$
where:
$\rho \equiv$ air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{P} \equiv$ pressure (Pa)
$\mathrm{R} \equiv$ constant ($\mathrm{J} / \mathrm{kg} \mathrm{K}$)
$\mathrm{T} \equiv$ temperature (K)
After accounting for modern weather services' custom of using hPa and Celsius, the equation becomes
$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)=\frac{\mathrm{hPa}}{287 \times(d 2}$

Hill angle

Obtaining the angle of the roadway can be forthright as well. One credible method is to acquire a large protractor with a hole at its vertex through which to affix a length of thread or thin string. The other end of the thread will be tied to a small weight. A straight hollow cylinder, such as a drinking straw, taped or glued to the base of the protractor serves to form a sighting guide (fig. 1).
While looking through the sight one moves the device until the inverted protractor's base becomes parallel with the slope of the road. Then by pinching the thread tight to the protractor, the hill's angle in degrees may be read directly. Alternatively, one may use a commercially available inclinometer such
as found on some magnetic pocket compasses, or a tripod-mounted transit designed specifically for the purpose. Occasionally, reliable survey data will be available. If a hill's slope is expressed as a grade percent, convert to degrees of angle with the following
degrees $=\operatorname{arc}$ tangent $($ grade $/ 100)$
Some computer spreadsheet programs perform trigonometric func ions exclusively with radians, which an be converted with the following ionships:
1 degree $=\pi / 180$ radians
1 radian $=180 / \pi$ degrees

Terminal velocity

Transient conditions influencing coasting hold the potential of exerting profound, even if subtle, accumulating effects. Any coasting event should be recognized as the sum result of many unidentifiable and a few identifiable controlling factors. As examples: edging past a tiny unseen pebble, trav ling through a small dip in the road bed, or even making slight unavoidable movements in steering, will induce a momentary velocity change, thus modifying the total time and distance traveled.
When observing an equilibrium condition, such as represented by the essentially unchanging value of ter minal velocity, minor variations in a road bed and other transient phenomen exhibit little
influence.
The rate of velocit increase becomes minuscule as a down-hill-coasting bicycle hill-coasting bicycle speed. The digital output of a cycle computer typically
rounds units of kilometers or miles to ounds units of kilometers or miles to reasons, a practical reading of the steady state will appear conveniently stior to the actual occurrence of terminal velocity. When coasting down a constant slope, one needs only to monitor a cycle computer to determine when velocity no longer increases or decreases.
The maximum-velocity function available on some digital cycle computers will display the terminal velocity value, but only if terminal velocity has not been exceeded due either to pedaling or variation of the roadbed. As with any data-collection procedure, obtaining as many samples as practical is desirable
These unt conversions may prove helpful
$\mathrm{mph} \times 0.4469=\mathrm{m} / \mathrm{s}$
$\mathrm{km} / \mathrm{h} \times 0.2778=\mathrm{m} / \mathrm{s}$

Example A

The following depicts a bicycle that has coasted to its equilibrium condition on two separate hills [4] Conditions, hill \#1 (prime)
combined rider \& vehicle mass: 100 kg grade: 5\%
temperature: 26C
air pressure: 1014 hPa terminal velocity: $12.5 \mathrm{~m} / \mathrm{s}$ surface: smooth asphalt wind: still air angle $=\operatorname{arc} \operatorname{tangent}($ grade $/ 100)$ $=\operatorname{arctangent}(0.05)$
$=2.86$ degrees
air density $=\mathrm{P} / \mathrm{RT}$
$=\frac{1014 \mathrm{hPa}}{2.87 \times(26 \mathrm{C}+273.15)}$
$=\frac{2.87 \times(26 \mathrm{C}+273.15)}{}$
$=1.18 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{m}^{\prime}=\frac{\text { mass } \times \text { gravity }}{\text { air density } \times \text { terminal velocity }{ }^{2} \times 0.5}$
$=\frac{100 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}}{}$
$1.18 \mathrm{~kg} / \mathrm{m}^{3} \times 12.5^{2} \mathrm{~m} / \mathrm{s} \times 0.5$

$=10.64 \mathrm{~m}^{2}$

$\mathrm{b}^{\prime}=\mathrm{m} \times$ sine $($ angle $)$
$=10.64 \mathrm{~m}^{2} \times$ sine 2.86 degrees $=10.64 \mathrm{~m}^{2} \times 0.05$
$=0.53 \mathrm{~m}^{2}$

Conditions, hill \#2 (double prime)
combined rider \& vehicle mass: 100 kg
grade: 8%
air pressure: 1016 hPa
terminal velocity: $16 \mathrm{~m} / \mathrm{s}$
surface: smooth asphalt
wind: still air
angle $=\operatorname{arctangent}($ grade $/ 100)$
$=\operatorname{arc} \operatorname{tangent}(0.08)$
$=4.57$ degrees
air density $=\mathrm{P} / \mathrm{RT}$

$$
\begin{aligned}
& =\frac{1016 \mathrm{hPa}}{2.87 \times(23 \mathrm{C}+273.15)} \\
& =1.20 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$\mathrm{m}^{\prime \prime}=\frac{\text { mass } \times \text { gravity }}{\text { air density } \times \text { terminal velocity }{ }^{2} \times 0.5}$
$=\frac{100 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}}{1.20 \mathrm{~kg} \mathrm{~m}^{2} \times 1 \mathrm{c}^{2} \times 0.5}$
$=\frac{10 \mathrm{~kg} / \mathrm{m}^{3} \times 16^{2} \mathrm{~m} / \mathrm{s} \times 0.5}{1.21 \mathrm{~s}}$
$=6.41 \mathrm{~m}^{2}$
$\mathrm{b}^{\prime \prime}=\mathrm{m} \times \operatorname{sine}($ angle $)$
$=6.41 \mathrm{~m}^{2} \times$ sine 4.57 degrees
$=10.64 \mathrm{~m}^{2} \times 0.08$
$=0.51 \mathrm{~m}^{2}$
Determination of CdA and Crr
Determination of the coefficients
of rolling resistance and aerodynamic
drag times area now occurs in the fol-
lowing manner:
Crr $=\frac{\mathrm{b}^{\prime}-\mathrm{b}^{\prime \prime}}{-\mathrm{m}^{\prime \prime}+\mathrm{m}^{\prime}}$
$=\frac{0.53 \mathrm{~m}^{2}-0.51 \mathrm{~m}^{2}}{}$
$-6.41 \mathrm{~m}^{2}+10.64 \mathrm{~m}^{2}$
$=0.0047$, and
$\mathrm{CdA}=-\mathrm{m}^{\prime}(\mathrm{Crr})+\mathrm{b}^{\prime}$
$=-10.63 \mathrm{~m}^{2} \times 0.0047+0.53 \mathrm{~m}^{2}$ $=0.48 \mathrm{~m}^{2}$

Single-hill comparisons
The previous treatment creates a foundation for additional testing methods. Physically modifying a bicycle's CdA by a known amount during one of two coastdowns will cause the terminal velocity to change in a predictable fashion (Kyle, 1984, 22-40 [5]). This observation suggests comparative coastings to determine CdA and Crr might be conducted on a
single hill in conjunction with a drogue device (see page 13).

Auxiliary drag

${ }_{\mathrm{Y}}^{\mathrm{Y}}$
drogue \equiv a known modifying value of CdA, and if
r vehicle +Y drogue $)=\mathrm{CdA}$ total, then and
enicle $=(-1) \mathrm{mX}+\mathrm{b}-\mathrm{Y}$ drogue.
These relationships permit the comparison of a coasting vehicle's unmodled (prime) and modified (double prime) configurations to give Crr: $(-1) \mathrm{m}^{\prime} \mathrm{X}+\mathrm{b}^{\prime}=(-1) \mathrm{m}^{\prime \prime} \mathrm{X}+\mathrm{b}^{\prime \prime}-\mathrm{Y}$ drogue
$X=\frac{b^{\prime \prime}-b^{\prime}-Y \text { drogue }}{-m^{\prime}+m^{\prime \prime}}=C r r$.
Though there exist various ways to lter a bicycle's aerodynamic properies, the deployment of amic proper chute [6], or the attachment of a rigid late off to the side of the vehicle [7], epresent ideas that have been success fully adopted in the past for increasing otal aerodynamic drag in a controlled manner It is assumed by this mathematical model that any auxiliary source f drag will be configured such that it will not significantly interact with the normal performance characteristic of the tested vehicle. A drogue device also implies a more elegant handling.
When
$\mathrm{M} \equiv$ mass
$\mathrm{g} \equiv$ gravitational constan
G \equiv grade [8]
$\rho \equiv$ air density
$\mathrm{v} \equiv$ velocity,
the following equation depicts the equilibrium between aerodynamic drag and rolling resistance, and grade's effect when at the steady state
$(0.5)(\rho)\left(\mathrm{v}^{2}\right)(\mathrm{CdA})+\mathrm{Mg}(\mathrm{Crr})=(-1) \mathrm{Mg}(\mathrm{G})$ This equation may be rearranged into: (0.5) p)(v)(CAA) =(-1 Ms(G+Cr). , abies applies:
) $\left(\rho^{\prime \prime}\right)\left(\mathrm{v}^{\prime \prime 2}\right)\left(\mathrm{CdA}^{\prime}+\mathrm{CdA}^{\prime \prime}\right)=(-1) \mathrm{Mg}(\mathrm{G}+\mathrm{Crr})$ If two coastdowns to terminal veloc has been modified, and both occur dur ing identical weather conditions on the same hill, permitting cancellation of values that have not changed, then: $\left(v^{\prime 2}\right)\left(\mathrm{CdA}^{\prime}\right)=\left(\mathrm{v}^{\prime 2}\right)\left(\mathrm{CdA}^{\prime}+\mathrm{CdA}^{\prime \prime}\right)$,
which, after having been solved for
CdA^{\prime}, reveals the following description:
CdA vehicle $=\frac{\text { CdA drogue }}{\left(\mathrm{v}^{\prime} / \mathrm{v}^{\prime \prime}\right)^{2}-1}$
By solving this equation, a bicycles CdA may be assessed even if mass, grade, and air density are unknown values, but are consistent from one coasting event to the next.

Example B

The following depicts measuring the CdA of a bicycle coasting to termina velocity twice on a single hill. The first coasting occurs without changes to the system. The second coasting is performed while a drogue device is deployed.
Conditions
CdA drogue $=0.44 \mathrm{~m}^{2}$
terminal velocity, unmodified $\left(\mathrm{v}^{\prime}\right)=15 \mathrm{~m} / \mathrm{s}$ terminal velocity, modified $\left(\mathrm{y}^{\prime \prime}\right)=9 \mathrm{~m}$

Determination of $C d A$

$\mathrm{CdA}=\frac{\mathrm{CdA} \text { drogue }}{\left(\mathrm{v}^{\prime} / \mathrm{v}^{\prime \prime}\right)^{2}-1}$
$0.44 \mathrm{~m}^{2}$
$=\frac{0.415}{(15 \mathrm{~m} / \mathrm{s} / 9 \mathrm{~m} / \mathrm{s})^{2}-1}$
$=0.25 \mathrm{~m}^{2}$

Limitations and strengths

The accuracy of determining th
hills' angles, air density, mass, and velocity values, ultimately control the quality of the solution. Though simple in design the suggested instruments are pragmatic and easily obtained. It is conceivable that by exercising due care any error brought about by input data could be made negligible.
There are several conceptual con cerns. First is the model's presumption that a precise single CdA and Crr solu tion set pair exists at all. It is unikely different roadways. Cd is distor throughout a range of velo ities [10 10] The assumption that a drogue could be deployed such that it does not interact in any manner with the vehicle's normal performance characteristic is indefensible However by utilizing comparative velocities, and other conditions which are close in value to one another the significance of these inherent errors will be lessened.
There exist logistical concerns. Any
testing done while other traffic is pres ent will be affected. The air must be still, a rare condition most frequently occurring shortly after sunrise Constant slopes of sufficient length, with reasonable constancy and accessibility are essential. And, above all safety must be in the forefront of an inves tigator's thoughts at all times while operating a bicycle. These hurdles are often fully surmountable. With recog nized imitations, testing as presented can provide an accessible way to estimate meaningful frontal CdA and composite Crr values for an individual vehicle. Most important, these estimates may be based on observation of steady-state conditions as occurring during actual road conditions.

Notes and references

1. Witt, F. R. and Wilson, D. G. 1982. Bicycling science, 2nd ed. Cambridge, MA: MIT Press.
2. Crr has been modeled here as including all conditions which impede the stant velocity. Thus, hub bearing losses are accounted for in the resulting Crr values as well as road texture, effects of tire design, tire air pressure, operating temperature, axle nut torque, et.al. It is recognized that bearing losses might be accounted for separately with additional handling and measurements.
3. Personal correspondence with Israel Urieli, Associate Professor, Dept. of Mechanical Engineering, Ohio University, Athens, Ohio, Fall 1999. (Reference applies to text section devoted to input values.)
Although m and b are shown as area, their unit serves only to facilitate dimensional analysis.
4. Kyle, C. R. 1984. Improving the Incing bicycle system. In Second Vehicle Symposium: Proceedings. Indianapolis, IN: IHPVA.
5. Most commonly associated with landing aircraft, hang gliders, and racing automobiles, deceleration parachutes are not new to land HPVs. A notable example appeared during the '98 Winter X-Games in Crested

Butte, Colorado. During mountainbike races on a steep, snow-covered ski run, several riders deployed large parachutes worn as belt packs as a marginally successful attempt to end descents having maximum speeds over $110 \mathrm{~km} / \mathrm{h}(70 \mathrm{mph})$.
Compton, Tom. "Coast-down tests", Hard-core-bicycle-science discussion thread (moderated e-mail list). 05 Aug 1997.
http://www.cyclery.com/lists/ hardcore-bicycle-science
8. Grade, instead of angle, has been used here to simplify the appearance of the equations. The value ultimately cancels out.
9. Wilson, D. G. 1997. Wind-tunnel tests, in review of Tour, das Radmagazin Human Power 12:4 (spring): 7-8. edge: Aerodynamic design of utru-stramlined lend vehicles. Cambridge, MA: Bentley.

Additional reading

and internet resources

11. International Human Powered Vehicle Association (IHPVA). 1982. The First International Human Powered Vehicle Symposium: Proceedings, Allan Abbott, ed. Seal Beach, CA: IHPVA
12. Cameron, A. 1999. Measuring drive-train efficiency, Human Power 46:5-7
13. Compton, Tom. "Analytic Cycling" (interactive website)
http://www.analyticcycling.com/ QCHome_Page.html
14. Flanagan, M. J. 1996. Considerations for data quality and uncertainty in testing of bicycle aerodynamics Cycling Science, Fall.
15. HPV [internet] mailing list threads: Measure wind resistance started by 1996: and "Special A Mor., started Fri, 10 May 1996, http:// www.ihpva.org.
16. Cycling software, Powercalc.

Jones, N. (shareware).
http://www.xsystems.co.uk machinehead/powercal.html 17. Martin, J., Milliken, D., Cobb, J.

McFadden, K. and Coggan, A. 1998. Validation of a mathematical model for road cycling power. Jl. of Applied Biomechanics.14:276-291.
8. Palmer, Chad. 1999. Understandin air density, USA Today, 6 January.
http://www.usatoday.com/weather/
density.htm
19. Papadopoulos, J. 1999. Simple approximations for the effects of tire Human Power 48:10-13.
20. Parks College Parachute Research, student area (contains a method fo estimating a small parachute's CdA http://www.pcprg.com/student.htm 21. Pivit, R. 1990. Measuring aerodynamic drag, Radjahren Feb.:47-49. (English language translationat.h (EN. 2. Sanders, Joël. 1999
. Sanders, Joel. 1999. A primer on bheet for power ca, wha spread${ }^{\text {graph }) . ~ S n y d e r ~ J . ~ C . ~ a n d ~ T e t z, ~}$
J. Tools: Spreadsheets. See http:// www.ihpva.org
24. Starkjohann, Christian. "Drag measurement on HPVs", http:// hal.kph.tuwien.ac.at/~cs/drag/ index.htm
25. -_"The bicycle tachograph", http://hal.kph.tuwien.ac.at/~cs/tacho/ index.htm
26. Tamai, G. 1998. Aerodynamic drag components, Human Power 13:2 (spring):15-17.

Acknowledgment

The author wishes to express his deepest gratitude to the following individuals for their encouragement, input and keen insights: Carl Etnier, Joël Sanders, Theo Schmidt, Jean Seay, Joh Susan Snyder.

The author

John Snyder is a cyclist from Great Falls, Montana.
-John Clark Snyder, Jr. 12 Golden Valley Loop Great Falls, MT 59404-6114 USA Phone: 406-727-4132; JCSnyder.studio@worldnet.att.net

Finding the CdA of a parachute

Dosact

Construction of a drogue parachute suitable for HPV experimentation is an easy project. Using scissors, cut the expo side creases and the bottom fold of a large, plastic lawn-and-leaf bas (4 micrometer thickness) to obtain equally-sized panels of material. Set one aside; the other will serve as a rectangular parachute canopy To each of the four corners, which have been knotted, tie lengths of thin nylon cord or twine. The other ends of the cords then can be attached, via a fishing-line swivel, to a handle. A circula hole cut in the center of the rectangle helps stabilizes the parachute when it's open and filled with moving air. The coefficient of aerodynamic drag of any drogue device is defined by:
CdA drogue $\equiv \frac{\text { drag }}{\text { air density } \times \text { air velocity } 2 \times 0.5}$
In order to determine the product of coefficient of drag (Cd) and area (A), it is not necessary to know the individual values of either Cd or A as they exist separately. A dimensional analysis reveals
CdA drogue $=\frac{\mathrm{N}}{\left(\mathrm{kg} \mathrm{m}^{3}\right) \times(\mathrm{s})^{2} \times(\mathrm{m})}$

$$
\begin{aligned}
& \left(\mathrm{kg} / \mathrm{m}^{3}\right) \times(\mathrm{m} / \mathrm{s})^{2} \times(\text { no unit }) \\
= & \frac{\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~kg} / \mathrm{m}^{3} \times(\mathrm{m} / \mathrm{s})^{2}} \\
= & \left(\mathrm{m}^{2}\right) .
\end{aligned}
$$

Thus, a drogue device's CdA may be learned by finding epresentative values for air velocity air density and the force due to air resistance. If connected to a land vehicle traveling through still air, a drogue device's air velocity equals the vehicle's ground speed. Estimating air density occurs by applying the prevailing air temperature and air pressure to the ideal-gas law.

The force is found with a little more effort. A spring-scale may be adopted as a hand hold when attached to a smal parachute's shroud lines. While riding aboard a tandem chute by the automobile, a passenger holds the open paraair flowing past the vehicle. The resulting drag causes an SI-unit instrument to display a reading in newtons (N). If the type of spring-scale available registers only kilograms, multiplying that unit number by $9.81 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})$ will yield the drag force (N).

Example

wind conditions: calm
relative air velocity: $8.5 \mathrm{~m} / \mathrm{s}$
air drag: 20.5 N
air temperature: $\quad 26 \mathrm{C}$
air pressure:
1014 hPa
air density $=P / R T$

$$
\begin{aligned}
& =\frac{1014 \mathrm{hPa}}{2.87 \times(26 \mathrm{C}+273.15)} \\
& =1.18\left(\mathrm{~kg} / \mathrm{m}^{3}\right)
\end{aligned}
$$

CdA drogue $=\frac{\text { drag }}{\text { ar }}$

$$
\begin{aligned}
& =\frac{20.5 \mathrm{~N}}{1.18 \mathrm{~kg} / \mathrm{m}^{3} \times(8.50 \mathrm{~m} / \mathrm{s})^{2} \times 0.5} \\
& =0.48\left(\mathrm{~m}^{2}\right)
\end{aligned}
$$

When deploying a drogue parachute to estimate either the parachute's or a bicycle's CdA it is strongly advised first to deploy the canopy at low initial air/ground speeds, hen slowly and cautiously increase the towing vehicle's velocity to a higher, though still modest, constant rate. The parachute described herein must not be used to slow an over-speeding vehicle.

TECHNICAL NOTES

Efficiency of bicycle chain drives:

results at constant velocity and supplied power

by Claire L. Walton and John \boldsymbol{c}. Walton

The paper by James B. Spicer el al., (2000) presents very useful and relevant information for the further understanding of HPV transmissions. Its conclusions concerning the effects of lubrication, rotation rate, and tension on efficiency are highly valuable. We believe this contribution wil be viewed as even more significant when the data are presented from a slightly different perspective
The testing apparatus was set up to maintain the rpm of the front chainring levels A single 52 tooth chainring was tested This leads to the observation that the largest rear wheel sprocket is most efficient Though correct this result is not necessarily widely appli cable. When applied power, crank rpm, and chainring size are held constant, the velocity of the vehicle and the force applied to the rear wheel must vary. Since the same work and chain ring rpm are producing different velocities, a different force must be reacting against the wheel. A physical analogy for the columns in table 1 and the results in figure 2 of the paper would be a situation where the $52: 11$ gearing represents downhill, $52: 15$ is level ground, and $52: 21$ is uphill. In this situation the $52: 21$ going uphill has greatest chain efficiency. This is a valid conclusion, but not the primary question in HPV design and operation. Similarly, in figure 3 the chain tension is kept constant. At constant tension
 torque
We are more interested in the case of constant power and constant rpm of the rear sprocket (i.e, constant velocity of a vehicle on the road at constant power supply to the wheel What sprocket will be most efficient for a vehicle at constant velocity? The experimental results suggest trade-off. At constant vehicle velocity
(and other conditions) a smaller sprocket will have a greater chain tension than a larger sprocket. The higher tension in the smaller sprocket will tend to counteract the inherent ower efficiency of the smalle procket (when sprockets are compared at constant tension). Which ffect is more important for the situaion of a vehicle traveling at constant velocity?
In order to address this question we take the measured data (specifically he then a revised format The experimental a cults are not changed: they are erely presented differently using imple algebraic manipulations. The power supplied to the wheel, and by the chain, Pc are given by:

$$
\begin{align*}
& P_{w}=2 \pi r_{w} \omega F_{w} \tag{Eq. 1}\\
& P_{c}=2 \pi r_{s} \omega T_{c}
\end{align*}
$$

he diference in power is from the loss of efficiency in the chain

$$
P_{w}=\zeta_{s} P_{c}
$$

$$
\zeta_{s}=\frac{P_{w}}{P_{c}}
$$

Substituting the equations for power and simplifying.
$2 \pi r_{w} \omega F_{w}=2 \pi r_{s} \omega T_{c} \zeta_{s} \quad E q .5$

$$
\begin{equation*}
T_{c}=\frac{F_{w} r_{w}}{\zeta_{c} r_{s}} \tag{Eq. 6}
\end{equation*}
$$

In order to eliminate variables we take a ratio of the chain tension from the use of two different sprockets (11 and 21-tooth) while keeping power supplied to the rear wheel constant:
$\frac{T_{21}}{T_{11}}=\frac{\zeta_{11} r_{11}}{\zeta_{21} r_{21}}=\frac{11 \zeta_{11}}{21 \zeta_{21}} \quad$ Eq. .

A similar equation is used for the 15 -tooth sprocket. The linear fits of chain tension versus efficiency for the different sprockets in figure 3 of Spicer et al., (2000) provide relationships between efficiency and tension for each sprocket. We assume that efficiency is independent of chain speed (as reported by Spicer et al., 2000) and that most of the chain loss is associated with the rear sprocket. Figure 3 of the paper indicates that at equal tension, larger sprockets are more effifthe loss in chain in association with the rear sprockets which are all much smaller than the 52-tooth chainring.
Solving the system of equations provides an estimate of the chain efficiency for the case of constant vehicle velocity and power applied to the rear wheel. The alternative data presentation is shown here in figure 1 with efficiency for each sprocket size given as a function of the chain tension in the 11 tooth sprocket. For example, when the tension in the 11-tooth sprocket is $1 / 0.006=167$ Newtons, the efficien cies are 92% for the 11-tooth sprocket, 90.5% for the 15 -tooth sprocket, and 88.5% for the 21 -tooth sprocketassuming the same vehicle velocity and power to the rear wheel for all three sprockets. The corresponding tensions and efficiencies for the 15 and 21 tooth sprockets are calculated using equa tion 7. The lines are truncated approximaty ranse the maller spock sive seat er chain efficiency The lines a to converge at high tensions, with all three sprockets giving high efficiency. The surprising and counterintuitive result is that the smaller sprockets have greater estimated chain efficiency at constant vehicle velocity and applied power than the larger sprockets. Therefore, the increased
efficiency from the higher chain tension is more important than the loss of efficiency from having the smaller sprocket. Clearly more experi-
mental data using different chainring and sprocket combinations will be required to answer questions on chain efficiency definitively

Nomenclature

$r_{w}=$ wheel radius, m
$\omega=$ rotation rate, rev/s
$F_{w}=$ propulsive force, N
$F_{w}=$ propulsive force, N
$r_{s}=$ effective sprocket
$r_{s}=$ effective sprocket radius, m
$\tau_{c}=$ chain tension, N
$\zeta_{s}=$ chain power loss factor or efficiency

Reference

picer, J.B., J.K. Christopher, M.J. Richardson, J. Ehrlich, and J.R Bernstein. 2000. On the efficiency of 50:3-9
Authors
Claire Walton is a senior at Franklin High School in El Paso, Texas. She is interested in pursuing a career in math physics, and music.
John Walton is an engineering profes sor at the University of Texas at El Paso who rides recumbent cycles.
-John Walton walton@utep.edu Associate Professo
Department of Civil Engineering niversity of Texas at El Pas El Paso, TX 79968 USA

Reciprocal tension in 11 tooth sprocket, \mathbf{N}^{-1}
rockets at constant vehicle velocity and power to the rear wheel.

FURTHER COMMENTS

 ON THE SPICER ARTICLE ON DRIVE-TRAIN EFFICIENCY
John S. Allen

The Spicer article on bicycle-drivetrain efficiency is interesting, and the research appears to me to have been well-conducted. The conclusion that much of the power loss was not converted to heat (that is, went into vibra tion instead) is interesting, as are the conclusions that loss is not much greater with an unlubricated chain or with chainline offset (though I think the losses with offset would be greater with older types of chain with flat side plates which do not engage and disengage smoothly). The conclusion that larger sprockets increase efficiency is expect ed from theory.
Spicer used two torque-measuring the other to the rear wheel At the high efficiencies typical of chain drives, hhis approach to measurement is so what prone to error, because the measurement of interest-the differ ence between the actual efficiency and 100%-is a small difference between two large quantities
One way around this problem is to use a single measuring device to mea sure a torque difference. Implementation of this approach is simple with a unity drive ratio: the torque from the motor at the input of the drive-train may be applied directly to the brake

Table 1. Drive rations					
	50 RPM	60 RPM	70 RPM	60RPM	60 RPM
	100 W	100 W	100w	150 W	175W
52-11	92.5	91.1	88.7	67.	95.5
$52-15$ $52-21$	94.7 95.2	92.3 93.8	90.4 92.0	96.2 97.4	97.5 98.2

Figure 3 (left) and Table 1 (above) provided by James B. Spicer for his article in Human Power 50, "On the efficiency of bicycle chain drives" are reproduced here for the convenience of readers of the technical notes submitted by
John Walton, and John Allen.
at the output, where it cancels excep
at the output, where it cancels excep At 100% efficiency, the torque of the motor and brake cancel, and so do the motor and brake cancel, and so do the
measurement errors. Assuming that a measurement errors. Assuming that a the input torque can be taken, this approach promises a high degree of accuracy for a high-efficiency system. Implementing this approach is somewhat more difficult in the case of a bicycle chain drive, with its step-up ratio. The torque-combining system must have the same ratio. Suppose, for example, that the bicycle's chain drive has a $52 / 15$ drive ratio. Then we could, for example, use another chain drive with the same $52 / 15$ ratio to combine
the torques at the motor and brake. What objections might be made to be that inefficiency of the torque-com bining drive system would corrupt the measurement But on second thought it need not The torque-combining drive system is not in motion, and so it system is not in motion, and so it been lost through vibration of the primary drive system. And that vibration converts the sliding friction of the stationary torque-combining chain drive into viscous friction (as also happens, for example, with the pivots of phonograph tone-arms when subjected to the vibrations transmitted from the stylus in the record groove).
There is another, real and serious problem, however, and it also occurs because the torque-combining chain is not in motion. Chord factors average out in a chain drive that is in motion, but not in one which is stationary. The chord factor of the 15 -tooth sprocket of our example is $1 / \cos 12^{\circ}$, or 1.022 , and the chord factor of the 52 -tooth The resulting range over which measurement may vary is the product of the two chod factors. An error range of over 2% is hardly desirable, given that the goal of the suggested measurement technique is inherent high accuracy The chord-factor problem may be greatly reduced by doubling or tripling the number of teeth on the torquecombining chain-wheel and sprocket, or may be eliminated (at some cost
complication) by replacing the chain drive with a gear drive or with knife edges positioned by a jackscrew to chieve the desired torque ratios. I ould be most interested to hear from approaches
Spicer's conclusions suggest some additional tests which he did not conduct. His infrared photographs show hat much heat was generated in the derailleur pulleys. Most derailleur puleys have primitive plastic sleeve bearings, yet no test was done of bearing ubrication, or of ball-bearing pulleys. Spicer never tested for how much friction is reduced by eliminating one or oth derailleur pulleys. And would larg r pulleys, with their smaller chor vibration as well as bearing friction?

John S Allen
@
,upllwebikexprt.com>

Bicycle stability after

RONT-TIRE DEFLATION

Oury)
Drawings by author, 2000.11.13 The problem
On three occasions I have had fronttire blowouts, or at least rapid loss of pressure, that have resulted in my having been thrown off my bicycle with some violence. One was when riding a Moulton road bike as a bus was about o pass; one was on an Avatar LWB ecumbent; and one on a CLWB recumbent, when I narrowly avoided being hi by a large truck. A friend told me about omeone who was, in fact, killed after his front tire burst, causing him to be propelled into the path of a car. A photo Magazinel showed two in Bicycling Magaze shor in the on a Contury jus after their front tire dul (a) harply at a corner during a mountain descent, thus overheating the rim). Th caption stated that as they hit the ground their bones breaking sounded ike a famous breakfast cereal ("snap! crackle! pop!").
The reporting from dead bicyclists is
zero, and the reporting of and examina tion of bicycle accidents is so perfunc tory that it is highly probable that a considerable number of deaths and serious injuries are the result of instability following front-tire deflation. Therefore this has to be regarded be regarded as a seriou
problem.
OUR Study of the problem
In the summer of 1998 I wrote about flat-tire instability to a list [Internet
discussion listl then called HBS for discussion list] then called HBS, for
"Hardcore bicycle science" "Hardcore bicycle science", moderated by Jim Papadopoulos (the name is now is moderated by Sheldon Brown). No one reported previous studies of this one repan apart from one described by problem apart from one described by
Doug Milliken, who wrote a letter "Flat-tire directional performance" to Human Power in spring 1991 (9:1, 17) He tested a motor-cycle fitted with proprietary run-flat tires on the rear wheel. The tires had a flap of rubber on the outside of the tire that fitted tightly over the rim and acted as a bead-retention system. One with a small flap did not in fact hold the bead when the tire was flat, and the bead fell into the "well" in the rim. The tire flopped around, causing the motor-bike to go unstable, even though the tire was on the rear wheel. The second tire with a wider flap held the beads in place. he could run the bike found that he could run the bike at high speed $(80 \mathrm{~km} / \mathrm{h})$ and could perrorm various mought worn. thought that good run-flat bicycle tires would probably be tubeless.
eral writers on this and on the HBS list contributed valuable the HBS and suggestions. Some reported similar occurrences to mine, including Dave Larrington of the British Human Power Club, who had had "instant crashes" from front-tire flats on regular bikes ("upwrong", in his words) and on
recumbents, and Joshua Putnam, who considered the problem serious enough to institute the practice of letting the air completely out of the front tire when trying out a new bike. Bill Volk wrote, II too find the situation to be unacceptable. I run heavy, inefficient thorn tube because of my fear that a blowout ay can't we have rims that retain the tires even at no inflation? And perhaps a rubber strip that is placed around the rim, under the tube, that supports the bike on loss of air pressure.... I had Performance semi-slick 26 " tires that fit so snugly that you could safely ride noinflation. That should be the standard." Presumably because of a tight-fitting
tire, Ed Deaton of Fools Crow Cycles tire, Ed Deaton of Fools Crow Cycles, miles (8 km) on flates fire had IRC "Roadites" with S m M14 Similarly Andy Miltein frinctor had no trouble riding with a flat front tire It was a Tioga Comp measured by Mark B. of Wheel Life, measured by Mark B. of Wheel Life CR-18 $20 \times 1.75^{\prime \prime}$ rim of about $27-\mathrm{mm}$ width. (That was significant because one of my early suspicions, and a concern of Larry Black, was that a wide tire on a narrow rim might have a greater tendency to "flop" alternately left and right.)
Bill Volk mentioned that Sutherland's Handbook for Bicycle Mechanics had a good section on fits between different brands of rims and tires, but my edition did not have this section, and I could not get an answer to my letter to Sutherland asking about standards of fit. John Allen, prominent bicycle expert and author, sent me a copy of his "apanese Industrial standards D 9421, "Rims for Bicycles", giving a tolerance of standard $K 6302$ "Pubber pneumatic of stes for bicycles", which, he pointed ries for bicycles", which, he pointed sions of tire beads. (Later, Andy Oury see below, found that the International Standards Organization ISO 5775/1 "Standards for bicycle tires and rims" also had tolerances for rim diameters but not, as far as he could determine, for tire beads. This was confirmed by Chris Juden, below.)

My instinct tells me that the old inch sizes had some specified or customary standards because my old $27 \times 1-1 / 4^{\prime \prime}$ and other "inch" tires were all at-least good" fits on the rims. Now, it seems from our experience and that of many people who wrote to me, it is entirely by chance that one gets a tire that is a pht fit on a rim and that will therefore provide a substantial degree of safety in the event of a front-tire blowout. However, Doug Milliken, a long-time consultant to Alex Moulton, wrote that Moulton controls both the rim diameter and the bead size of his 17 "tires. I wrote to Andrew M. Fischer, a Boston-area attorney who specializes in helping bicyclists with liability claims, ut he had had no experience of this roblem.
Chris Juden, technical officer of the Cyclists' Touring Club (UK), and a esource on every aspect of bicycle per dards for tyres and rims: ISO 5775 part and 2. The only trouble is: they and 2 . The only trouble is: they heir own convenience so - 2 places ather tight tolerances upon rim-beadeat diameter (plus or minus 0.48 mm) whilst -1 says nothing at all about the corresponding tyre-bead dimension "Having once been involved in rim manufacture, I can tell you we used o have some interesting arguments with Raleigh around the fact that a lightweight alloy rim inevitably shrinks some 0.46 mm in diameter when you put properly tensioned spokes in it! Since this standard doesn't say if it's talking about pre- or post-build dimen sions, we had to restrict ourselves to only the top half of that measly tolerance or else Raleigh quality control would measure our bare rims or built wheels respectively, depending upo Michelin were a tight or loose fit! "On th BSI on people always played their cards very close to the chest and would never be drawn when invited to submit appropriate limits and fits for their products oren the criteria for a simple blow off test. With many an 'Ah yes, but' and it's not so simple as that', the cycle-tyre industry has thus been remarkably suc
cessful in keeping the matter of product safety and testing entirely to themselves!"
Chris Juden is now on a committee of the European standards organization CEN, which enforces its standards on member countries. ISO standards are only, it seems, recommended. John "LRaY" Stephens wrote "You should get some tire-and-rim-industry experts involved with this [question of standards for tire fits). Unfortunately, have never heard of any such persons Tires just seem to float down out of heaven (or rise up from hell?)".... After considerable efforts to reach tire manufacturers I was told that Vredestein, the Netherlands manufacturer of the tire on the German recumbent on which 1 had my most-recent episode of instabibehavior However, when eventually I becived. Howrer, wer U. K. Banerjee it turned out that he was investigating puncture prevention.
I bought a product called "Snake-
charmer" from Bikewise International, Mammoth Lakes, CA. It was a length of dense solid trapezoidal-shaped rubber intended to be fed into the rim-well under the tube to prevent "pinch" flats and presumably to give some run-flat capability. It was produced only for large ATB tires, at least at the time of

Figure 2. "Snakecharmer" run-flat insert
(note rim without bead (note rim
seats) flat-tire stability to my list of undergrad-uate-thesis topics at MIT. Andy Oury ly, carried out several vad enthusiastical ments, and has allowed me to report some of his results here. We drew up a too-ambitious program in which we
wanted to look not only at bead reten
tion but also at the effect of the ratio of tire width to rim width (ATB tires in particular are usually bulbous, having a pear-shaped cross-section on what seems like a small rim) and of tiresidewall stiffness. Andy Oury worked on what the correspondents just quoted thought was the most important factor, bead retention.

The EXPERIMENT

We first thought that we could do a highly controlled experiment by having my troublesome bicycle wheel and tire, held in a frame, running on the surface of an inverted portable belt sander. However, the tire did not display the extraordinary alternating flops, left and right, that had thrown me off my bike, pushing the bike subsequently Oury pusing he bike subsequen h. Oury to occur he had to rig up a bike to run along a simulated roadway with similar number of degrees of freedom as has a bicycle when it is being ridden (or pushed). The simple
The simplest way of producing bead retention on the shoulders of the wheel rim after deflation seemed indeed for them to be a tight fit. I have had tires that could be stretched over the wheel the ony with great difficuly. Wh remained in tube inflation pressure reached around 80% of normal full pressure. They then "snapped" over the rim shoulders with a satisfying crack. My experience follows that of Doug Milliken and Bill Volk: I have never found tire instability with tires that were a tight fit on the rims, and which, therefore, did not flop loosely around in the rim when they became deflated. I confess that i canblowout with a good fitting tire I would contw re a good-uis lie. lwo instability that mor three bikes mentioned above absolutely three bikes
impossible.
The tires that caused me the problems were exceedingly loose. This characteristic made puncture repair almost a pleasure, because one could get the tires on and off without tire levers. They were so loose, in fact, that cen-
ering them during subsequent inflation ecame difficult: it was easy to produce n eccentric rolling surface, even to the extent of having the tube pop out between tire and rim where the tire was high. Oury built up the rim shoulders sing standard "masking" tape, and he put on fifteen layers before the tires were retained and the flat-tire flopping was inhibited. His experiments thereore did a great deal to confirm the premise: that a slack fit between tire bead and wheel rim is the prime cause of flat-tire instability and that a tight fit will therefore provide a substantial degree of safety in the event of a front ire blowout.
 Figure 3. Tire beads retained: symmetric

ecomimendations

The International Standards Organiation should form a committee of tire and rim manufacturers to agree on tandards of rim diameter and shape and of tire-bead diameters so that tight fit could be relied upon in all circumstances. Then manufacturer should agree to observe these standards.
-Dave Wilson <dgwilsonediaone net Oury, Andrew P. (1999). "Run-flat perfor mance of bicycle tires and rims" Thesis, B.S.M.E., M.I.T., Cambridge MA

Right: Cover of the latest paperback vernd testing of a reconstruction and testing of a Gireek trireme. The first
edition was published in 1986 (ISBN 51564190) and as a textbook in 1990 (ISBN 0521311004). Hardoover edition
the 2nd ed., ISBN 0521564190

REVIEWS

the athenian trireme, 2nd ed., by J. S. Morrison, J. E. Coates and N.B. Rankov, Cambridge Universit
ISBN 0-521-56456-5 (pbk.)

Reviewed by Theo Schmidt

The Athenian Trireme is a compre hensive report on the reconstruction and testing of a Greek trireme with 170 rowers, probably the largest and most successful such project in recent times, even if the object of interest dates back to several hundred years BC. These Greek warships were numerous and very successful in their day, but none survive, as they were unsinkable and were thus never preserved in bottom mud as were some other ships. It may also be characteristic of the time that a great deal was whe the abour whe thes in whech hese ships were used, but selves. Well know is their technique of semming and holing other ships with a protruding and strengthened bow
Part I of the book, which was orig Part I of the book, which was orig-
inally published in 1986, starts with inally published in 1986 , starts with and correlating the meagre data available such as not-to-scale pictures on vases, coins and reliefs. It is not even clear whether the name trireme (Greek: trieres) actually means three vertically displaced levels of single-oared rowers, whose feasibility the project aims to prove, or single levels of oars manned by several rowers each, which seems

From the book jacket: "For this second edition, the text
has been recast and a number of substantive changes have been made in the light of the sea trials and new research. In addition, there is an entirely new cha ter which describes the trials of Olympias in detail,
reports the performance figures obtained and autlines the changes which the authors would wish to incorporate into any second reconstruction. There are nineteen new illustrations, including eleven photographs of Olympias sea demonstrating features of the design which
represented only by drawings in the first edition.'
to be the more common arrangement depicted by artists. The pros and cons of the different arrangements are described as well as the reasoning which led to the reconstruction plan the Olympias, which was then launched in 1987. However before this, models and even a full-scale floating section were built in order to study the rowing geometry. The ship was built with more or less traditional materials and methods, but not exclusively, as the major interest lay in operational research and not historical ship-building. It took the combined resources of two trusts (one British, one American) to build the Olympias, and also of the Hellenic navy which owns and operates it.
Part II is completely new in this second edition and describes the results of numerous sea trials in the years 1987-1992. The olympias nearly live 55 . . than hor for 8 knots were recorded The total effi ciency of the oar system was estimated at about $1 / 3$. Rowing the Olympias is hard, difficult, and sometimpias ant work, but apparently there is usually no shortage of volunteers, whether civilian or navy. Only the top level of rowers can see their oars, whereas the bottom-level rowers can see
nothing in their poorly ventilated and smelly workspace (where they are also being dripped on by the sweat from the upper rowers). The logistics of operation are remar journey requires that almost two tons of water be on board for consumption by the rowers. Olympias also performs well under its two square sails. Combined sailing and rowing allows slightly higher speeds with a bit less effort.
The report concludes with a discussion of the results and suggestions for slight improvements. However, it Trireme project was just about optimal, and the same can be said for the book
-Theo Schmidt

THE DANCING CHAIN by Frank Bert

 Ron Shepherd and Raymond Henry. der Plas Publications, San Francisco, A or, signed, from Frank Berto fberto@ix.netcom.com for US $\$ 58.00$ ncluding shippingThis is a large, beautiful, hard-cover, profusely illustrated and comprehenive book on derailleur gears. (It also has intriguing paragraphs on hub gears, bicycle companies, bicycle magazines, the people who invented, developed, sold and rode the gears and bikes, and much more.) I have been interested in cycle gears for many decades, but I fond myself continually saying "Wow: to myself as f earned about aspects of es tolor for war sars Bers or ew derailleurs in Bicycling and other mazines and I have great respect for him and his two co-authors, Raymond Henry from France and Ron Shepherd from Australia. Walter Slreich of Germany and Tony Hadland f Britain also contributed to and checked parts of the book. Van der Plas Publications have put the same effort
into producing this book as it does for the series of proceedings of the confer ences on bicycle history.
Every reader of Human Power should, if you can afford it, buy this fundamentals, the reasons for contin ual changes in design, the pitfalls to avoid, and so on that you will ever need. It may seem expensive, but it has been produced at what is likely to be a considerable loss (even if the authors receive no compensation for their years of dedicated work). It has been published by Frank Berto because no publisher would undertake so large a publication at so little possibility of sales sufficient to cover expenditures. Accordingly, there are only a few avail able. Rush to get your copy! And give rator for their major contibutions the human-power movement.

BICYCLE DESIGN by Mike Burrows. Open Road Publishers, UK, AlpenBooks Press, ISBN 0-9669795-2-4 Reviewed by Dave Wilson
Mike Burrows is the best-known and probably the foremost bicycle designer in the world today. He is also one of the top designers and builders of HPV He has therefore done a great deal to bring together two of the very different branches of bicycles and bicycling an to endow HPVs with respect from the "regular" biking community. He is also an everyday bicyclist and a racer in his Windcheetah Speedy tricycle or his

Ratcatcher short-wheelbase recumbent bike. Several years ago he was hired by Giant of Taiwan, one of the largest bicycle manufacturers in the world. His influence is therefore already major and is likely to increase.
Mike's book on bicycle design has been eagerly awaited. When Open Road Publishers failed recently we were concerned that we would not get to see it, but we are fortunate, at least on the American continent, that AlpenBooks has picked it up. It is a sturdily bound paperback of 160 pages, on bright-white stock, with some color "centerfolds" of "Mike's favourite bikes." All the photographs are clear and good, B/W and color, as are the diagrams. There are also several excellent cartoons by Jo Burt and Geoff Apps.
The book starts with a gracious foreword by Richard Ballantine, paying tribincluding some that he has recently learned: diplomacy and gentle advocacy, which increase his effectiveness cacy, which increase his effectiveness Then we plunge into what I can only describe as pure Burrows: fifteen chapters of Mike's strong views on everything from ergonomics to monoblades and cantilever wheels. They are well written (or well edited by Tony Hadland) and expressed with nice modesty as well as pride in his many innovations, which he often credits to others. For instance, the monoblades and cantilever wheels he saw on an 1889 crossframe "Invincible" in a museum. (He is also kind enough to state that he wants his book to fit in the gap between Richard's Bicycle Book and Whitt and Wilson's Bicycling Science. He succeeds superbly! He wanted no algebra or equations, and he nanaged that.) He apologizes that his book is written from a Bredish perspective. It is, but he gives pany also comes out well.
pany also comes out well
discussion space on HPV and bicycling discussion space on HPV and bicycling mailing lists would be enlightened by
Burrows' trenchant observations and opinions. In discussing frame design he draws a distinction between torsional stiffness and vertical compliance that makes a lot of sense. His guidance on
eep-section "aero" wheels, which can have very stiff rims, and the need for more-forgiving rims on all-terrain bikes, and his frank statements on what he doesn't like, are all high-value and high octane. Likewise his comments on suspension, braking and monoblades are pure common-sense that isn't as common as we would like
As it happens, I'm in what I hope are he closing stages of writing the third edition of Bicycling Science (with Jim Papadopoulos), and I am working on

GUEST EDITORIAL

Your next vehicle: a velomobile? Joachim Fuchs $\begin{gathered}\text { Joachim Fuchs }\end{gathered}$
Velomobiles are fully faired recumbert potential to play an increasing role within different types of human-pow ered vehicles. In addition, they could red venictes. n addion, hey could future traffic Or more precisely: can fully faired everyday recumbents replace cars and normal bicycles? This article gives a view over the recent developments in Europe.
First of all, velomobiles are humanpowered vehicles that differ from normal bicycles in function and appearance. There are many types, produced as prototypes and in smallscale manufacturing. Velomobiles are fully faired recumbent cycles that are constructed for everyday use and provide full rain protection. The fairing also gives better protection from accidents for the driver
An important question is: Why should I use a velomobile, and what are the advantages compared to a bicyele on the one
and?
An obvious example of the difference tat of a normal bicycle is that users of velomobiles wear almost the same clothes in summer and winter This is one main argument for velomobiles: here is no need for a look outside in the morning. No shapeless rain suits hinder one's pedaling. In addition, both women and men can ride in business
the chapter on the future of bicycles. I've realized that just about everything that I hope to see in future bikes, like cantilever wheels that one can change rapidly when one has a flat or when one wants to put on a studded tire (as on the day of writing), and all-enclosed trans missions, and disk brakes, have been worked on by Mike Burrows. The man is a master and his book is a "must read".
suits if they wish
This implies that there must be good ventilation, an important factor in velomobile design. Because of the absence integrated in the fairing The air stre within the fairing is moderate cor pared with that on an unfaired bicycle
Therefore, the rider learns to moderate his or her own power. My own expeate his or her own power. My own expe-
rience shows that one sweats less in a well-ventilated velomobile even in summer. In contrast, on a normal bicycle one is getting "blown dry" by the wind and sweating starts intensively after riding. This is unpleasant when riding to work regularly. Properly mounted air flaps within a fairing can avoid this effectively.
When riding uphill, passive ventila
tion does reach its limit, on a regular

Different velomobiles present at meeting in Oktober
2000 in Germany. From front to rear: Leitra, Aeolos and Cab-bike. In. Contrast to to to other: veitra, Aeolos (a development of the author) is a tow-wheeleer. Further
informations can be found at http://www.elomobile.d
bicycle and in a velomobile, because the speed of the vehicle is not enough to produce a sufficient air flow. The question is often asked: "Is it possible mobiles are around 15 per cent heavier than upright bicycles if the rider is included in both cases. The speed lo uphill can therefore never be larger than this 15 per cent. On small or moderate gradients uphill, the lower air resistance of the velomobile compensates for this disadvantage. Velomobiles normally have a smaller effective frontal area (which governs the air resistance). This is the reason for the higher speeds that can be reached with some velomobiles.
Higher speeds are attractive especially
or riders that are used to physical exercise and have fun riding with their own power. Those people who like riding at $1.5-3 \mathrm{~m} / \mathrm{s}(5-10 \mathrm{mph})$ will not feel a difference. With a little more power input, rider who are not very sportive come astonished when they an ride at $13 \mathrm{~m} / \mathrm{s}, 30 \mathrm{mph}$, for some time. This is indeed possible with "sportive" velomobiles.
There are, naturally, many different kinds of velomobiles Most velomobiles are tricycles. They are stable, anyone ad they hide them immediately, and they have good luggage capacity. Two-wheelers are ridden by sportive fard f A solos and Desira. In everyday use the handling is very important Getting in and out should not be hindered by the fairing This is the precondition for switching from a bicycle to a velomobile: it should be practicable for short distances (buying bread rolls on Sunday morning....
A velomobile that exhibits its advanages only in rainy weather would not find many users, because the additional place to park such a velomobile is a problem at least in urban cities in Europe. To some extent, one can say

A young velomobile enthusiast during a test... A young velomobie enthusiast during a test...
Children have a lot of fun sitting in velomobiles even they cannot see through the wind-
shield! shield!
that velomobiles combine the advantages of cars and bicycles. As bicycles, velomobiles can be used on road everyday distances con. ©overe through a nice landeape where car drivers have to use boring main roads. Besides that velomobiles are economic even though they are exper sive when purchased. This is especially the case if velomobiles are oft used and if they replace other vehicles Compact velomobiles can be taken along in a train with a bicycle compart ment, at least in some countries in Europe. Some designs can be take apart to make them easier to stow, which is necessary with most tricycles. People who like to ride with other
(non-velomobile) riders should take

The variety of velomobiles indicates that there is still potential for further developments.
into account that one can chat while pedaling. This can also be useful for communicating with other traffic users, mostly car drivers. A properly users, mostly car drivers. A properly along sidewalks and shopping malls. (You will have a built-in shopping cart!) Most enthusiasts first think of rain protection when the talk is about velomobiles. On the one hand, there are sly unfaired riders who calculate that it rains only a small amount of time. On the other hand, in practice, people who get wet once are more kely to use the car next time.
To match the demands of practicability, constructors have to design heir products with considerable skil. Protection from cold wind in winter time is as important as from rain. on a noral beyche is to choose the right clotes. Atr sweat under the warm clothes. Velomobiles avoid this problem, because one can adjust the air flow, band do no have to change clothes. And what is the feeling when getting in a velomo bile? First of all, velomobiles are quite narrow. This is a necessary propecause velomobiles should be built light in weight and compact to corkinge only little space when . The feeling in a velo. Some is individually quite variable. Some fairing people feet ill at ease in the Other ren the fe and secure in the fairing because of the protection effect. The well-being is protection effect. The well-being is
further influenced by other factors. The sight through the windscreen for example should not be affected by reflections. A velomobile should have a low noise level inside the fairing. All his contributes to the fed is specific for velomobiles. Most test riders get along quickly with the "new" "ideal" velomobile is that it is the proper means of transportation in most everyday situations. Thus, partially faired vehicles with the head outside the fairing have the disadvantage that the head might have face a very strong wind. Nevertheless, some bicycle riders choose that kind of
recumbent vehicle, believing that the have more advantages than upright bicycles. Velomobiles moreover offer a "built-in" rain protection, advanced aerodynamics and a protection from There are several velomobiles mmercially available. The first velo mobile to attain widespread use was he Leitra. The Leitra follows the classic concept with a lightweight stee frame and a glass-fiber fairing fixed to he frame. This offers the advantage hat there is less noise than in a monocoque" vehicle. Later velomo biles often use a construction that is easier to realize. One example of that ind is the Cab-bike. Such velomobil dre have a frame in its own sense. ith all he forms a Vhicles of that hind have fewer ar ar he case of damage it is necessary o repair it skillfully to ensure the hell recovers its rigidity There are further aspects to take into account, for example eye-level height, which is important in urban traffic. Besides he commercially available velomobiles there are some vehicles that were either produced for personal us or have at least the potential for a commercial product. The inventors of prototypes add to the diversity of velomobiles. To give some examples. eleric, Hajen, Jouta, Desira, Pedicar Muscar. Each vehicle was constructe or different purposes; the Desira even xists in several versions.
Although velomobiles offer lots of advantages, one should remember that velomobiles serve a niche market. The price of more than approx. US $\$ 5500.00$ is far higher than that of most upright eyeryon coud find wis its the demands of daily commuting Can you see yourself in a velomobil soon?

References

A lot of information can be found on
the internet:
General information: www.ihpva.org www.velomobile.de This is an internet platform for velomobiles that was just started (please have a look on
it now and then to get current infor mation). The velomobiles mentioned in this text are introduced or linked there
Several publications in the Proceedings of the European Seminars On Velomobile Design I- IV. Further information at www.futurebike.ch Printed papers:
Curneal, Steve, 1990. Omega: The evolution of a recumbent. HPV News Jan/Feb:10-11
Stuart, Bob. 1994. Coroplast HPV body construction. HPV News Dec:17-19 Dovydenas, Vytas. 1990. Velomobile. Berlin: Verlag Technik GmbH [ISBN 3-341-00790-3; originally published in Lithuania and translated into German; out of print

Joachim Fuchsj-fuchs@foni.net

Editorials

The end of a drean

My principal activity other than work on Human Power seems to be trying to finish (with Jim Papadopoulos) the third edition of Bicycling Science have been working on the chapter about what we can expect and wh we might want in our future bicycles The easy way out was to refer reade to Encycleopedia and Bike Cultur Quarery and other publications of Oper Road. But the shocking news of employestcy and the laying of of It has seemed to be a miracle that the company could do what it did: to produce (since 1993) a series of superbly produced texts and magazines and vid eos on alternatives in cycling. Every issue of everything it did was not only a resource for the cycling enthusiast every photo was so bear u dy do nut became "coffe th using that as a term of admiration not disprata a Each publication, could be left on a table at a doctor's office and would be guaranteed to be looked at with wonder by a wide range of people. Thus it spread acceptance and even respect for the more adventurous, and the quirkier, human-powered vehicles We enthusiasts would seize each issue of each series and be inspired by the
quality of the publication and by the ingenuity of the subjects. We marveled that this could be done without advertisements of macho trucks and SUVs on every other page. Open Road had been going from strength to strength for the better part of a decade, publishing in English and German, with agents in four countries, organizing "Bike Culture Weeks" in its home territory in and near York, UK, and, lately, publishing two superb books.
I had thought that Open Road must have an "angel funder", in the way that the early IHPVA had infusions for prizes from Du Pont especially, but it seems that there was none. The speed of the collapse of Open Road, and the large amount of debt at the end, are sadden ing and sobering. We in the new, reor even timid by comprison, wh yetw are hanging by a slim financial threa. The temptation to draw some parallels is irresistible: if we want superb pub lications like those of Open Road to continue and the less-ambitiou but irreplaceable magazines such as Recumbent Cyclist News (RCN), Recumbent $U K$, and all the other publications of our national and local HPV associations (in which we hope we may include Human Power), we must support them with subscriptions and with the recruitment of others to join. People like Jim McGurn and his associates at Open Road performed the miracles they did in the spirit of missionaries with a vision, at low or zero pay. Many selfless people also invested in a dream, and have lost all their money. We give

HuMAN POWER PUBLISHING
 RECORD, 1995-2000

Human Power 11:4 (Fall/Winter 1994-95)
Human Power 12:1 (Spring 1995) Human Power 12:2 (Fall 1995) Human Power 12:3 (Winter/Summer 1996)

Human Power 12:4 (Spring 1997) Huan Power 13:1 (Fall 1997)
oo-short period of brilliance, one that hone on us all. We hear that some of the former staff have plans for new publications to try to carry on the trad tion, and we wish them god speed.

Tiresome

-Dave Wilson
Pneumatic tires were patented twice in 1845 by Thomson and in 1888 by another Scot, Dunlop. (Patent procedures can still be as capricious.) When was a child, motor-tire failures were to be expected in regular driving. Nowadays a flat on almost any motor vehicle is, or was, very rare. Racers go around the turns of Indianapolis and the twists of European Grand Prix ciruits at over three-hundred km/h, at very high tire temperatures, with amaz gre "Indy" were Firestone So how did it my wher the mplicated in many failures in Ford Explorer vehicles at farlower speeds d temperatures? How could Ford design a vehicle that would roll over fter an event as expectable as a tire ilure? And how could Ford make a ehicle (on which its profit margin is allegedly very high) that, when it rolle had no inbuilt roll cage, so that it crushed passengers still in the vehicle? Tires have also been blamed for he crash of the supersonic Concorde he investigators have tentatively concluded that, during a take-off run, one tire or pair of tires picked up a piece of metal that was on the runway and either spun it off like a projectile into a fuel tank, or spun off pieces of re that perforated the fuel $\operatorname{tank}(\mathrm{s})$.

Volume 13:3 (Summer/Fall 1998)
In 1998 we moved to a simple numbering system for Human Power, since we are not able to publish on a regular, pre-defined schedule
Adding up all the issues we could find back to issue $1: 1$, we numbered the next issue \#46. After a long-time nember noticed that we had lef wint 1998-99 issue \#47.
bad luck, until reports were aired that tires on Concordes had failed in similar fashion more than once previously. So had engineers or managers just wished the problem wasn't going to recur? An approximately similar number of people died as allegedly did from the Firestone-Ford tire problems.
In this issue of Human Power we report on a problem with bicycle tires: a flip-flop behavior that can throw rid ers suddenly orf their machines whe a front tire deflates. It appears to be caused simply by poor fits of tires on rims. If this is so, it could be solved quickly by industry agreement on the dimensions of rims and tires, spurred possibly by government specification We don't know how many lives have been lost from this unnecessary serie of fares. Biy cle acciders are not taked in duth The ha be cry Your editor's letters to the US, Consumer Product Safety Commiss and to several industry organizations have remained unanswered.
Remedies for bicyclists have th same status as so-called "orphan drugs". These drugs are not developed for fatal but relatively rare diseases because drug companies see insufficient profit. Is the bicycle-tire-rim case a situation where industry is not being sued enough? The much maligned product-liability lawyers can correct serious deficiencies in industry responses, or lack of responses, shoddy practice.
-Dave Wilson

Thus, for 1999 and 2000 , we pub lished the following Human Power 48 (Summer 1999) Human Power 49 (Winter 1999-2000) Human Power 50 (Spring 2000) Human Power 50 (Spring 2000)
We expect to publish at least two issues of Human Power in 2001 and have already begun work on Human Power 52.

International Human

 Powered Vehicle AssociationIHPVA
PO Box 1307
San Luis Obispo, CA 93406 USA
http://www.ihpva.org

